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In-cylinder pressure analysis is nowadays an indispensable tool in internal combustion engine research &
development. It allows the measure of some important performance related parameters, such as indicated
mean effective pressure (IMEP), mean friction pressure, indicated fuel consumption, heat release rate, mass
fraction burned, etc.. Moreover, future automotive engine will probably be equipped with in-cylinder
pressure sensors for continuous combustion monitoring and control, in order to fulfil the more and more
strict emission limits. For these reasons, in-cylinder pressure analysis must be carried out with maximum
accuracy, in order to minimize the effects of its characteristic measurement errors. The exact determination
of crank positionwhen the piston is at top dead centre (TDC) is of vital importance, since a 1� degrees error
can cause up to a 10% evaluation error on IMEP and 25% error on the heat released by the combustion: the
position of the crank shaft (and hence the volume inside the cylinder) should be knownwith the precision
of at least 0.1 crank angle degrees, which is not an easy task, even if the engine dimensions are well known:
it corresponds to a piston movement in the order of one tenth of micron, which is very difficult to estimate.
A good determination of the TDC position can be pursued by means of a dedicated capacitive TDC sensor,
which allows a dynamic measurement (i.e. while engine is running) within the required 0.1� precision
[1,2]. Such a sensor has a substantial cost and its use is not really fast, since it must be fitted in the spark
plug or injector hole of the cylinder. A different approach can be followed using a thermodynamic method,
whose input is in-cylinder pressure sampled during the compression and expansion strokes: some of these
methods, more or less valid, can be found in literature [3e8]. This paper will discuss a new thermodynamic
approach to the problem of the right determination of the TDC position. The base theory of the method
proposed is presented in the first part, while the second part deals with the assessment of the method and
its robustness to the most common in-cylinder pressure measurement errors.

� 2010 Elsevier Ltd. All rights reserved.
1. Base theory of the method

The compression and expansion processes in a motored (i.e.
without combustion) engine can be described observing the energy
transformations regarding the unity mass which remains in the
cylinder. The first law of thermodynamics states that:

dq� pdv ¼ du (1)

where dq represents the elementary specific heat received by the
gas from the cylinder walls, p and v represent the gas pressure and
specific volume, and u the specific internal energy.

The gas involved in the process is air and can be assumed to be
a perfect gas, thus the following equations are also valid:
ax: þ39 (0) 916657163.
e).
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p v ¼ R0T0
dp
p

þ dv
v

¼ dT
T

du ¼ cVdT R0 ¼ cP � cV

9>>>=
>>>;

(2)

being T the gas temperature, cP and cV the constant pressure and
constant volume specific heat, and R’ the gas constant.

The compression-expansion process in a motored engine can be
assumed to be frictionless, hence the second law of thermody-
namics states that the specific entropy variation dS of the in-
cylinder gas is:

dS ¼ dq
T

(3)

thus, from equations (1) and (2) the specific entropy variation
results:
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Fig. 2. TemperatureeEntropy diagram of the diabatic compression-expansion process:
peak pressure (point D) occurs before the TDC (point E).
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þ p dv
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T
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þ dv
v

�
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v

¼ cV
dp
p

þ cP
dv
v

(4)

Due to mass leakage through valve seats and piston rings, the
available volume V for the in-cylinder gas increases, hence its
specific volume changes:

V ¼ v$m0
dv
v

¼ dV
V

� dm
m

(5)

where m represents the in-cylinder mass.
Hence, considering thefinite increment “d“due to a crank rotation

dw, the specific entropy variation in equation (4) will now result:

dS ¼ dq
T

¼ cP
dV
V

þ cV
dp
p

� cP
dm
m

(6)

being dm the mass entering the cylinder (which is negative
whenever in-cylinder pressure is higher than outer pressure); from
equation (6) the in-cylinder pressure changes then results:

dp ¼ 1
V
½dQðk� 1Þ � kpdV � þ kp

dm
m

(7)

where dQ ¼ m dq represents the heat received by the gas (which is
negative when the gas temperature is higher than wall tempera-
ture, i.e. dQf (TwalleT)) and k ¼ cP/cV is the isentropic coefficient.

In an ideal adiabatic motored engine both dQ and dm would be
zero, and pressure would reach its maximum (dp ¼ 0 in equation
(7)) when the volume is minimum (dV ¼ 0): the compression and
the expansion strokes would cause in-cylinder pressure variations
symmetric with respect to TDC and the Location of the Peak Pres-
sure LPP (which can be easily determined with 0.1 precision by
means of polynomial interpolation of the pressure curve sampled
with 1 crank angle degrees resolution) would coincide with the
position of the TDC. As is known, in a TemperatureeEntropy (T, S)
diagram the adiabatic compression-expansion process of the in-
cylinder gas would be represented by two coincident segments
(AB and BA in Fig. 1). If the compression-expansion process is dia-
batic (i.e. in presence of heat transfer), according to the second law
Fig. 1. TemperatureeEntropy diagram of the compression-expansion process in
amotoredcylinder: ideal engine (segmentsABandBA)anddiabatic engine (dashedcurve).
of thermodynamics (equation (3)), the entropy variation depends
on the gas temperature: when this is lower then wall temperature,
heat transfer is positive and hence entropy increases; on the
contrary, whenever gas temperature is above the wall temperature,
entropy decreases. This explains the diabatic evolution reported
both in Figs. 1 and 2: as can be observed, in adiabatic process, the
maximum pressure condition is reached before the minimum
volume, i.e. before the TDC. In a real motored engine, pressure
variation is also influenced by mass leakage dm and, as shown by
equation (7), together with heat transfer, it causes the pressure
increase to be zero when the volume changes are still negative (i.e.
during compression); hence these two phenomena cause the
pressure curve to be asymmetric with respect to the TDC, shifting
the LPP in advance with respect to the TDC position (as can also be
seen from the pressure curve reported in Fig. 3, obtained by means
of thermodynamic simulations performed using the model
described in Appendix A): the angular distance between LPP and
the TDC position is called “loss angle” (wloss), being related to the
energy and mass losses, and usually assumes values between �0.4
and �1 CA degrees, depending on the entity of the heat transferred
and the escaped mass:

wloss ¼ LPP � LTDC (8)

1.1. The loss function and its increment

Equation (6) also shows that two easily measurable quantities,
the in-cylinder pressure and volume, allow the evaluation of the
entropy variation (i.e. heat transfer) together with themass leakage
by means of the functions dV/V and dp/p, which are plotted as
example in Fig. 5; defining the “Loss function” F so that:
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Fig. 3. Qualitative progress of in-cylinder pressure and volume near TDC.
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Fig. 5. Qualitative progress of dV/V and dp/p (obtained using the model described in
Appendix A with dw ¼ 1 CAD).
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dF ¼ cP
dV
V

þ cV
dp
p

(9)

it will result:

dF ¼ dSþ cP
dm
m

(10)

The entity of the variation of the Loss function, dF, which gathers the
sum of the two losses, is then determined by the capability of the
cylinder walls to exchange heat with the gas and by the amount of
gas escaping from the cylinder. The qualitative progress of the Loss
function variation in a real cylinder during a compression-expansion
process, together with its two constitutive terms dS and cP dm/m, is
shown for example in Fig. 4: the entropy variation starts with
a positive value (being T< Twall) anddecreases, crossing the zero line
whenT¼ Twall, and reaching aminimumnear the TDCposition (here
the heat flux from the gas to the wall is maximum), then starts to
increase becoming positive before the Bottom Dead Centre (BDC);
the relative mass leakage dm/m, being related to the difference
between in-cylinder pressure and outer pressure, follows a similar
trend, reaching a minimum near the TDC: it follows that, in this
position, the loss function variation equals the sum of the two loss
angle causes. Following this concept the authors tried to obtain
information on the loss angle entity directly from the loss function
variation.When the gas pressure reaches the peak value (i.e.at LPP),
the ratio dp/p is zero, and equation (9) becomes:

dFLPP ¼
�
cp
dV
V

�
LPP

(11)

The latter equation shows that at the peak pressure position the
knowledge of the loss function increment dF allows to determine
the value of dV/V which, depending only on engine geometry (see
Fig. 5 and equation (12)), is a known function of the crank shaft
position, and hence of the loss angle. The function dV/V can be
expressed as:

dV
V

¼
sinðwÞ

 
1þ cosðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2�sin2ðwÞ
p

!
dw

2
r�1 þ mþ 1� cos ðwÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � sin2ðwÞ

q (12)

where r is the volumetric compression ratio and m expresses the
rod to crank ratio (i.e. the ratio between connecting rod length and
crank radius). Since the loss angle is normally around �1�

(¼ �0.017 radians), further approximations can be made:

sinðwlossÞzwloss cosðwlossÞz1
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Fig. 4. Loss function variation dF and its two constitutive terms (obtained using the
model described in Appendix A with dw ¼ 1 CAD).
It follows that, at the peak pressure position, equation (12)
becomes:

�
1
V

dV
dw

�
LPP

¼
wloss

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2�wloss

p
�

2
r�1 þ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � wloss

p (13)

Hence, being wloss
2 << m2, equations (11) and (13) yield:

wloss ¼ 2
r� 1

$
m

mþ 1
$

�
1
cp

dF
dw

�
LPP

(14)

This demonstrates that the loss angle can be easily correlated to
the loss function increment dF evaluated at the peak pressure posi-
tion. Unfortunately dF undergoes great distortions even with small
phase errors between dp/p and dV/V: Fig. 6, as example, shows some
loss function variation curves calculated by means of the thermo-
dynamic model exposed in Appendix A assuming different phase
errors (expressed as fraction of the loss angle). As can be seen,
a pressure phasing error equal to the loss angle (which means
LPP ¼ 0) introduces a considerable error in the evaluation of the
function dF. This fact, without a reliable way to evaluate the dF at
the peak pressure position, would make equation (14) useless. The
same Fig. 6 however shows the existence of two zones common to
eachof the curves: in these twocrankpositions the two fundamental
functions for the calculus of the entropy variation, dp/p and dV/V,
reach their extreme values (at about �30 CAD ATDC in Fig. 5), and
hence are poorly influenced by small phase errors (i.e. in the order of
the loss angle); for this reason, according to equation (9), in these
two crank positions the loss function variation remains almost
unchanged. This fact implies that assuming a TDC position error
equal to the loss angle (easily achievable setting LPP¼ 0), the values
of the loss function variation dF1 and dF2 in the two points relative to
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Fig. 6. Loss function variation dF for different phase errors (obtained using the model
described in Appendix A with dw ¼ 1 CAD).
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the minimum and maximum of the function dV/V will be nearly
correct. Hence, in order to determine the loss angle from equation
(14), a correlation between dF1 and dFLPP has been searched, and, as
shown in Appendix B, it has been found that, for a given engine, the
ratio between dFLPP and dF1 is almost constant, i.e.:

dFLPPzF$dF1 ¼ F$dFmindV=V (15)

where F is a proportionality constant.
As shown in Appendix B this constant mainly depends on the

engine compression ratio and on the heat transfer law, and its mean
value has been estimated to be 1.95. Thus equation (15) becomes:

dFLPPz1:95$dFmindV=V (16)

As a result, the top dead centre position can be determined
phasing the pressure cycle with an initial error equal to the loss
angle (i.e. setting LPP ¼ 0) and calculating the loss function incre-
ment dF1 at the minimum dV/V position w1, which requires,
according to equation (9), the estimation of the functions dV/V and
dp/p. Unfortunately both of these functions can be affected by
measurement errors: the in-cylinder pressure acquisition can be in
fact subjected to bias error (above all if an un-cooled piezoelectric
transducer is used) and to electric and mechanical noise, while the
in-cylinder volume estimation may present inaccuracy related to
the compression ratio, which is normally known with some
approximation (�3%). Moreover, as shown in equation (9), the
specific heat at constant pressure and volume are required, which
are functions of the gas temperature; this in turn can be deduced
applying the perfect gas law by means of the gas temperature at
inlet valve closure, which is normally known with an approxima-
tion as high as 30 �C.

All these uncertainties may strongly affect the dF1 evaluation, as
shown for example in Fig. 7: here the loss function variation is
calculated supposing both different compression ratio errors (top
figure) and pressure bias errors (bottom figure). As can be seen, in
presence of these measurement errors, the evaluated dF1 may
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Fig. 7. Loss function variation dF in presence of compression ratio error (top) and
pressure bias error (bottom): dF1 (>) and dF2(6) are shown (pressure cycles phased
with LPP ¼ 0 obtained using the model described in Appendix A with dw ¼ 1 CAD).
considerably differs from the real one (i.e. error ¼ 0) thus pre-
venting a reliable evaluation of the dFLPP and hence of the loss angle.

However the same Fig. 7 also shows that the evaluated dF1 and
dF2 move in different directions in consequence of the measure-
ment errors: this effect implies their mean value dFm remains
almost constant, as shown in Table 1 and Table 2.

dFm ¼
�
dF1 þ dF2

2

�
¼
 
dFmindV=V þ dFmaxdV=V

2

!
(17)

It follows that, in order to correctly evaluate the loss angle, the
loss function increment at the peak pressure position dFLPP should
be correlated with the mean value dFm rather than with dF1. Thus
relations (15) becomes:

dFLPP ¼ F$dFm (18)

Therefore the method proposed by the authors reposes on the
evaluation of loss function increment dF1 and dF2 at the minimum
and maximum dV/V positions (w1 and w2), which, according to
equation (18), allows to evaluate the loss function variation at the
peak pressure position dFLPP; this, in turn, is linked to the loss angle
wloss by means of equation (14) and furnishes the top dead centre
position (see equation (8)). The determination of the angular
positions w1 and w2 at which the function dV/V is minimum and
maximum requires the derivation of equation (12), whose result is
a function not solvable in the variable w.

Hence these angular positions must be evaluated using numeric
methods; considering compression ratios r ranging from 10 to 20
and rod to crank ratios m ranging from 2.8 to 4.0, the authors
determined the angular positions w1 (¼�w2) using a 2nd order
polynomial interpolation on the dV/V curve extended to a range of
�0.4� around the position of the extreme values. The results, as
pointed out in Fig. 8, showed that the angular positions w1 and w2
depend both on the compression ratio and on the rod to crank ratio.
The data obtained allowed to trace a formula for the calculation of
the minimum and maximum dV/V angular positions with a preci-
sion of 0.1�:

w1;2 ¼ H76:307$m0:123$r�0:466 ½CAD ATDC� (19)
Table 1
Percentage error on both dF1 and dFm for different pressure bias errors.

Pressure bias error [bar] Err% dF1 Err% dFm

�0.15 �332% 18%
�0.10 �202% 11%
�0.05 �93% 5%
0.00 0% 0%
0.05 82% �4%
0.10 155% �8%
0.15 221% �11%

Table 2
Percentage error on both dF1 and dFm for different compression ratio errors.

Compression ratio error Err% dF1 Err% dFm

�6% �219% �3%
�4% �144% �2%
�2% �71% �1%
0% 0% 0%
2% 70% 1%
4% 138% 2%
6% 205% 3%
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1.2. Procedure for TDC position estimation

Summarizing, once the motored pressure cycle has been
sampled, the procedure for the TDC estimation consist of 5 steps,
here resumed:

1) the pressure cycle must be phased setting LPP ¼ 0 (in this way
the position error is exactly equal to the unknown loss angle
wloss): for this purpose a 2nd order polynomial fitting per-
formed on the pressure curve around the maximum pressure
value position allows a sufficient precision

2) the angular position w1 and w2 of the minimum and maximum
dV/V must be evaluated (for example using equation (19))

3) the loss function increments dF1 and dF2 at the angular position
w1 and w2 must be calculated by means of equation (9)

dF ¼ cP
dV
V

þ cV
dp
p

and hence their mean value dFm ¼ 1/2 (dF1 þ dF2)

4) the loss function increment dFLPP at the peak pressure position
can be determined from equation (18)

dFLPP ¼ F$dFm
Table 3
Simulation conditions for the evaluation of the loss angle entity (more details can be
found in Appendix A).

Manifold absolute pressure 0.4 to 1.0 bar (steps of 0.1)
Engine speed 1000 to 3000 rpm (steps of 500)
Compression ratio 10 and 22
Rod to crank ratio 3.27
Bore 70.80 mm
Stroke 78.86
Leakage flow area AN 0.507 mm2

Walls temperature 70 �C
where the constant F can be estimated by means of equation (46)
(reported Appendix B) or set to the mean value 1.95, as determined
in Appendix B

5) the loss angle wloss, and hence the TDC location, can be then
evaluated by means of equation (14)

wloss ¼ 2
r� 1

$
m

mþ 1
$

�
1
cp

dF
dw

�
LPP
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It is worthwhile to mention that the first step is not necessary if the
pressure cycle has already been phased with an error lower than
the loss angle. Moreover the specific heat cP and cV in equations (6),
(9), (11) and (14) should be temperature dependent and evaluated
according to the classical known functions valid for air, as reported
in Appendix A. However a satisfactory approximation is equally
reached if the cP and cV are supposed to be constant. In this case the
evaluation of the gas temperature is completely avoidable for the
TDC determination.

2. Assessment of the method

In order to ascertain the reliability of the method proposed,
a series of simulations has been performed to generate plausible in-
cylinder pressure curves compatible with the real compression-
expansion process which takes place in a motored engine cylinder,
taking into account both mass leakages and heat transfers. The
pressure curves obtained have been then used to test both the
reliability of the proposed method in the determination of TDC and
its robustness to the most common encountered measurement
problems. Details on the thermodynamic model used for the
generation of the pressure curves are given in Appendix A.

A first series of simulations has been performed in order to
estimate the entity of the loss angle and its dependence from the
engine operative condition of speed and Manifold Absolute Pres-
sure (MAP). The simulations were carried out, as resumed in
Table 3, taking into consideration the dimensions of a commercial
available automotive engine, two compression ratios (10 and 22),
different conditions of MAP and speed and employing three
different heat transfer models (reported in Appendix A). For each
simulated pressure curve, the seven points around the maximum
value have been interpolated by means of a 2nd order polynomial,
thus obtaining the location of the pressure peak (LPP) as the vertex
abscissa: this procedure ensured a precision of 0.001 CAD, which is
amply higher than the required one of 0.1 CAD. Once known the
LPP, the loss angle is known by its definition:

wloss ¼ LPP � LTDC

As a result, the diagrams in Fig. 9 shows the loss angle values
obtained with compression ratio ¼ 10 employing theWoschni heat
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Table 4
Loss angle values determined with low compression ratio.

Comp. ratio ¼ 10

Heat transf. model Woschni Eichelberg Hoenberg
Loss angle �0.62 �0.64 �0.85
Variation range �0.21 �0.36 �0.31

Table 5
Loss angle values determined with high compression ratio.

Comp. ratio ¼ 22

heat transf. model Woschni Eichelberg Hoenberg
loss angle �0.63 �0.62 �0.88
variation range �0.22 �0.34 �0.31
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transfer model. It can be observed that the loss angle, whose values
go from�0.46 to�0.88, mainly depends on engine speed, while the
manifold pressure plays a minor role. Since the two causes of the
loss angle, heat transfer and mass leakage, decrease their entities
with growing engine speed, then the loss angle diminishes too. The
manifold pressure influences both the relative mass leakage dm/m
and the specific heat exchanged with walls, causing then lower loss
angles with higherMAP. Themean loss angle values estimated both
for low and high compression ratio engines according to each of the
three heat transfer models are resumed in Table 4 and Table 5,
together with their variation ranges. As shown, there are no great
differences between the two compression ratios: using the
Woschni and the Eichelberg models, the loss angle resulted to be
about �0.63 CAD, while employing the Hoenberg model, the mean
MAP 0.6 bar
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Fig. 11. Heat exchange coefficients according to the three heat transfer models at
1500 rpm and MAP ¼ 0.6 bar (engine with r ¼ 10).
loss angle was found to be about �0.87 CAD. This different
prediction is due to the higher heat exchange coefficient which
characterize the Hoenbergmodel with respect to the other two (see
Fig. 10 and Fig. 11).

2.1. Application of the method proposed

The application of the proposed method requires the calculation
of the loss function increment dF at the angular position w1 and w2
(see equation (19)) relative to the minimum and maximum dV/V; in
these two positions both dV/V and dp/p must be evaluated (see
equation (6)), together with the gas temperature, which allows the
determination of both cP and cV (see equation (32) in Appendix A).
The relative volume change dV/V can be easily estimated, since the
engine dimensions are generally known; hence, as already shown
in equation (12):

dV
V

¼
sinðwÞ

 
1þ cosðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2�sin2ðwÞ
p

!
dw

2
r�1 þ mþ 1� cos ðwÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � sin2ðwÞ

q
where w represents the crank angular position (w ¼ 0 at TDC). It
must be pointed out that this expression is valid for a centred crank
mechanism: the case of a non centred crank mechanism is dis-
cussed below.

The evaluation of the relative pressure change dp/p may pres-
ents, instead, some problems related to the in-cylinder pressure
acquisition, which is generally performed with one crank angle
degree resolution. The authors propose the following procedure for
the calculation of dp/p at w1 and w2: first of all the relative pressure
increment must be numerically evaluated, hence:

�
dp
p

�
i
¼ ðpiþ1 � pi�1Þ

2pi
(20)

Then the dp/p values must be interpolated, as function of the
crank position, by means of a 3rd degree polynomial (which
revealed to give better results than the 2nd and the 4th order
polynomial) in the range of �20� around w1 and w2; the fitting
polynomials thus obtained permit the precise evaluation of dp/p at
w1 and w2 position. As pointed out below, this procedure is also
useful for noise filtering purpose.

The first series of simulations aimed to verify, both for a constant
mass process and in presence of gas leakage, the value of the pro-
portionality constant F calculated in the Part 1. To that end the
pressure curves have been computed according to each of the three
heat transfer models with and without mass leakage, for different
manifold pressure and engine speed conditions, and assuming
various compression ratio and rod to crank ratio (i.e. the ratio
between connecting rod length and crank radius), thus generating
1050 different pressure cycles, as summarized in Table 6.

For each of the simulated pressure cycles, the above resumed
5-steps procedure has been applied in order to evaluate the loss
Table 6
Simulation conditions for the evaluation of the proportionality constant F.

Manifold absolute pressure 0.4 to 1.0 bar (steps of 0.1)
Engine speed 1000 to 3000 rpm (steps of 500)
Compression ratio 10 to 20 (steps of 2)
Rod to crank ratio 2.8 to 4.0 (steps of 0.3)
Bore 70.8 mm
Bore to stroke ratio 1
Leakage flow area 0.507 mm2

Walls temperature 70 �C
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angle value, which in turn allows to estimate the TDC location: this,
compared to the knownTDC location of the thermodynamic model,
allowed to determine the TDC estimation error of the method
proposed for each of the pressure cycles.

The results obtained confirmed the evaluation carried out in
Appendix B: in fact the top diagram in Fig. 12, which reports the
maximum error in the TDC position evaluation for a constant mass
process and for each of the heat transfers models, shows that
F ¼ 1.92 provides the best compromise between the different heat
transfer models. When also the effect of gas leakages is considered,
as predicted in Appendix B, the proportionality constant tends to
increase, as confirmed by the bottom diagram in Fig. 12: in this case
in fact a safer value would lie between 1.95 and 2, minimizing thus
the loss angle evaluation error. It is worthwhile to mention that this
result however depends on the gas leakage entity, i.e. on the value
adopted for the equivalent flow area (see Appendix A for more
details). The diagrams in Fig. 12 also show that in both cases the
entity of the error committed on the loss angle value is safely below
the allowable 0.1 CAD: this result confirms the validity of themethod
proposed for the determination of the top dead centre position.
2.2. Assessment of the method’s robustness

Once confirmed the validity of the method proposed, the
authors assessed its robustness towards the most common in-
cylinder pressure measurement problems and uncertainties, which
are here listed:

1) Pressure bias error: this kind of error is typical when dynamic
sensors or sensors subjected to thermal drift (e.g. an un-cooled
piezoelectric sensors) are employed. If the measured pressure
cycle is compensated by means of one of the most known
methods [10,11], the pressure evaluation uncertainties may be
as high as 10 kPa: the effect of such ameasurement error on the
loss function increment dF has already been shown in Fig. 7 and
Table 1.

2) Engine compression ratio: this fundamental parameter is nor-
mally known with some approximation, typically �3%. Such
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Fig. 12. Maximum TDC position error as function of the proportionality constant F:
heat transfer only (top), both heat transfer and mass leakage (bottom).
uncertainty may introduce an estimation error on the evalua-
tion of in-cylinder volume, which in turn may affect the reli-
ability of themethod proposed, which relies on the function dV/
V; Fig. 7 and Table 2 show the effect of a�4% compression ratio
error on the estimation of the loss function increment dF.

3) In-cylinder gas temperature: during the compression-expan-
sion process it can be evaluated bymeans of the perfect gas law,
on the base of the gas temperature at inlet valve closure TIVC,
which, taking into account wall heat transfer during the intake
stroke, is usually assumed to be 15O30 �C higher than the
manifold gas temperature. This estimation may introduce an
error as high as �30 �C.

4) Pressure measurement noise: it is known to internal combus-
tion engine researchers that a noise component is always
present in the pressure signal measured. It may origin from the
mechanical vibrations perceived by the transducer or from
electromagnetic interferences. Analysing some experimental
pressure cycles sampled on a spark ignition engine, it was
found that the intensity of such a noise typically reaches
a 600 Pa standard deviation. Fig. 13 shows the strong effect on
the loss function increment dF of a uniform noise with a stan-
dard deviation of 400 Pa.

The dimensions of the engine considered in the robustness were
the same of Table 3. The compression-expansion process has been
simulated by means of the thermodynamic model described in
Appendix A on different conditions of engine speed and MAP (35
operative points), as summarized in Table 7.

For these simulations, just theWoschni heat transfer model was
employed (which is the only one developed both on motored and
fired engine cycles [7]) since the attention was focused on the
robustness of the methods. The pressure curves obtained by the
simulations were modified introducing the above mentioned
measurement errors, as described in the following equations:

p’ ¼ pþ pbias þ pnoise
TIVC’ ¼ TIVC þ errorT
r’ ¼ r$

�
1þ errorr

	 (21)
Table 7
Simulation conditions for the robustness tests.

Manifold absolute pressure 0.4 to 1.0 bar (step ¼ 0.1)
Engine speed 1000 to 3000 rpm (step ¼ 500)
TIVC 35 �C
Twall 70 �C
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Table 8
Maximum TDC position errors for different measurement disturbances e (r ¼ 10,
F ¼ 1.95).

Disturbance entity Max TDC position error [CAD]

No disturbance 0.042
TIVC þ30 �C 0.041
TIVC �30 �C 0.044
Compression ratio þ5% 0.045
Compression ratio �5% 0.038
Pressure bias error þ10 kPa 0.034
Pressure bias error �10 kPa 0.063
Pressure signal noise st. dev. 600 Pa 0.043

Table 11
Maximum TDC position error obtained in the robustness test of Table 10.

Maximum TDC position errors [CAD]

compression ratio ¼ 10 0.058 0.035 0.065 0.039 0.061 0.032 0.066 0.036
compression ratio ¼ 22 0.041 0.037 0.045 0.041 0.045 0.037 0.048 0.040
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On a first step the measurement errors were introduced one at
a time, then the resulting pressure, volume and temperature data
were employed to compute the loss angle by means of the
proposed method. Table 8 reports the maximum TDC position error
found for each of the disturbances introduced: as can be seen, it
remained always below the 0.1�. The worst effect is played by the
negative pressure bias error, while noise effect was adequately
attenuated by means of the filtering properties of the 3rd order
polynomial used to fit the dp/p values.

In order to test the robustness of the method also for a high
compression ratio engine, the simulations of Table 7 have been
repeated setting the compression ratio to 22. Each disturbance has
been applied again identically, except for the noise, which has been
supposed to increase proportionally to the pressure levels, and has
been amplified to reach a standard deviation of 1800 Pa. As shown
in Table 9 the results obtained confirmed the reliability of the
method even with high compression ratio engine, safely reaching
the required precision of 0.1 CAD.

Even if the method proposed revealed to be robust against each
of the measurement errors assumed, it must be considered that in
a real experimental test these disturbances may occur simulta-
neously. Hence, in order to assess the robustness of the method
when the disturbances are simultaneously present, the pressure
cycles simulated in the 35 operative conditions of Table 7 were
modified using the combination of disturbances reported in Table
10 and then employed to determine the loss angle by means of
the proposed method. The maximum TDC position errors obtained
for each disturbances combination are presented in Table 11 both
for low and high compression ratio: as shown, in the case of low
compression ratio (r ¼ 10), the simultaneous presence of
Table 9
Maximum TDC position errors for different measurement disturbances e (r ¼ 22,
F ¼ 1.95).

Disturbance entity Max TDC position error [CAD]

No disturbance 0.048
TIVC þ30 �C 0.050
TIVC �30 �C 0.048
Compression ratio þ5% 0.050
Compression ratio �5% 0.047
Pressure bias error þ10 kPa 0.045
Pressure bias error �10 kPa 0.05
Pressure signal noise st. dev. 1800 Pa 0.041

Table 10
Disturbances combinations used in the robustness test.

Pressure signal noise st. dev. 600 Pa (r ¼ 10) or 1800 Pa (r ¼ 22)

TIVC error �30 �C þ30 �C
Compression ratio error �5% þ5% �5% þ5%
Pressure bias error [kPa] �10 þ10 �10 þ10 �10 þ10 �10 þ10
disturbances induced a maximum errors of 0.066 CAD, while in the
case of high compression ratio engine (r ¼ 22), the maximum TDC
position evaluation error was 0.048 CAD.

The method proposed hence revealed to be robust enough to
allow a safe evaluation of the TDC position (themaximum error was
lower than the required 0.1 crank angle degrees) even in presence
of the typical in-cylinder pressure measurement errors and
disturbances.
2.3. Non centred crank mechanism

If the engine is endowed of a non centred crank mechanism, the
crank angle position with respect to the cylinder axis when the
connecting rod and the crank are aligned (i.e. when the piston is at
top dead centre) is not zero but assumes the value w T, as depicted in
Fig. 14.

If the angular position are still evaluated with respect to the
cylinder axis, then the angle w T must be accounted for in order
to correctly evaluate the TDC position by means of the ther-
modynamic method. As shown in Fig. 14, the angular positions
of Top (w T) and Bottom (w B) Dead Centre can be calculated
since:

sinwT ¼ z
lþ r

sinwB ¼ z
l� r

(22)

where z is the crank pin offset (i.e. the distance between the crank
pin and the cylinder axis), while l and r are the connecting rod
length and the crank radius respectively. For a non centred crank
mechanism, the piston stroke results to be:

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ rÞ2�z2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� rÞ2�z2

q
(23)

hence, from Fig. 14, the in-cylinder volume is:

V ¼ AC$

2
4 c
r� 1

þ ðlþ rÞ$coswT � l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
s� sinw

m

�2
s

� r$cosw

3
5

(24)

being AC the cylinder section area and s the ratio z/l.
Fig. 14. Representation of a non centred crank mechanism.
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Equation (12) then becomes:

dV
V

¼
sinw$

 
1þ cosw�sm$cotwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2�ðsinw�smÞ2
p

!

c
r$ðr�1Þþðmþ1Þ$coswT�m$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�
�
s�sinw

m


2r
�cosw

$dw (25)

which, besides allowing the correct estimation of the loss function
increment dF by means of equation (6), can also be used for the
numerical evaluation of the angular position w1 and w2 of minimum
and maximum dV/V through polynomial interpolation: the authors
however observed that, for this purpose, equation (19), which has
been derived for centred crank mechanism, still gives good results.
Being the loss angle in the order of �1 CAD z �0.017 radians, the
following approximation can be made:

wloss << 10sinwlosszwloss cos wlossz1�
s� sinwloss

m


2
<< 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
s� sinwloss

m


2r
z1

(26)

hence equation (25) becomes:

�
dV
V

�
LPP

¼
wloss þ wloss

m � s
c

r$ðr�1Þ þ ðmþ 1Þ$coswT � m� 1
$dw (27)

The crank pin offset z is usually small with respect to the rod
length l, then also w T << 1 and hence.

coswTz1 wTzsinwT ¼ z
lþ r

¼ s
1þ 1=m

¼ m$s
mþ 1

(28)

Equation (27) thus gives:
Table 12
Dimensions of the engine with crank pin offset.

Compression ratio 10
Rod to crank ratio 3.27
Bore 70.80 mm
Crank radius 35.40 mm
Crank pin offset 2 mm (s ¼ 0.017)
Leakage flow area 0.507 mm2

Table 13
Maximum TDC position errors for different measurement disturbances (non centred
crank mechanism, F ¼ 1.95).

Disturbance entity Max TDC position error [CAD]

No disturbance 0.015
TIVC þ30 �C 0.014
TIVC �30 �C 0.024
Compression ratio þ5% 0.018
Compression ratio �5% 0.018
Pressure bias error þ10 kPa 0.032
Pressure bias error �10 kPa 0.039
Pressure signal noise st. dev. 600 Pa 0.049

Table 14
Maximum TDC position errors obtained in the robustness test (non centred crank mech

Pressure signal noise st. dev. 600 Pa

TIVC error �30 �C
Compression ratio error �5% þ5%
Pressure bias error [kPa] �10 þ10 �10
Max TDC position error 0.044 0.058 0.044
�
dV
V

�
LPP

¼
wloss$

�
1þm
m



� s

c
r$ðr�1Þ

$dw (29)

which, together with the latter of equations (28) and equation (11),
allows to evaluate the loss angle:

wloss ¼ s$m
mþ 1

þ c=r
r� 1

$
m

mþ 1
$

�
1
cp

dF
dw

�
LPP

¼ wT þ c=r
r� 1

$
m

mþ 1
$

�
1
cp

dF
dw

�
LPP

(30)

As can be noted equation (30) differs from equation (14) for the
presence of the angular offset w T and for the ratio c/r which is less
than 2 for a non centred crank mechanism.

In order to verify the reliability of the method with a non cen-
tred crank mechanism, the simulations in the operative conditions
of Table 7 have been repeated with and without measurement
disturbances using the engine data of Table 12: the results, resumed
in Table 13, clearly show that the method proposed still estimates
the TDC position with a maximum error of 0.049 CAD.

Table 14 instead reports the maximum TDC position estimation
errors obtained with the simultaneous presence of the measure-
ment disturbances for each of the 35 operative conditions: also in
this case the maximum TDC position errors found remained under
the required accuracy of 0.1 CAD. The method proposed thus
revealed a good reliability even when the engine used is charac-
terized by a non centred crank mechanism.
3. Conclusions

As is known to internal combustion engines researcher, the
exact determination of the crank position when the piston is at Top
Dead Centre (TDC) is of crucial importance for indicating analysis:
the maximum allowable error results to be about 0.1 Crank Angle
Degrees (CAD). Due to wall heat transfer and mass leakage, under
motored condition (i.e. without combustion) the TDC position does
not coincide with the Location of Pressure Peak (LPP) but follows it
by an angular arc called “loss angle”, which, depending on the
engine, is normally in the range of 1 Crank Angle Degrees (CAD).

This paper presents a new thermodynamic method for the
estimation of the TDC position in internal combustion engines. The
method relies on the definition of a proper function, called “loss
function”whose increment is directly connected to the two “losses”,
i.e. wall heat transfer and gas leakage.

As described in the first part of the paper, the estimation of the
loos function increment in two particular crank positions allows to
determine the loss angle.

In the second part of the paper, the method is put to the test by
means of thermodynamic simulations, thus verifying its capability
to determine the loss angle under many different operative
conditions of engine speed andmanifold pressure, both for low and
high compression ratio engines, and using three different heat
release models. Moreover, typical in-cylinder pressure measure-
ment errors and disturbances (pressure bias errors, pressure signal
noise, compression ratio and gas temperature uncertainty) have
anism, F ¼ 1.95).

þ30 �C
�5% þ5%

þ10 �10 þ10 �10 þ10
0.058 0.045 0.073 0.045 0.073
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been taken into account in order to test the robustness of the
method proposed: as a result, the proposed thermodynamic
method revealed a very good accuracy and reliability in deter-
mining the TDC position, assuring the required accuracy of 0.1 CAD
even in presence of considerable disturbances, both for centred and
non centred crank mechanism.

It is worthwhile to mention that the method proposed is
intrinsically robust towards the entity of both heat transfer and
mass leakage because it “weighs up” the effect of both “losses” in
two particular crank positions and then estimates the entity of the
two “losses” at the peak pressure position, which in turn allows to
evaluate the loss angle. This means that the method proposed
maintain its precision apart from the amount of both heat
exchanged with wall and mass escaped from the cylinder.
Appendix A. Thermodynamic model used for the simulation
of the compression-expansion process in a motored engine
cylinder

This section gives some details on the thermodynamic model
used for the compression-expansion process simulation.

The model employed is zero dimensional and has been imple-
mented on a spreadsheet with a resolution of 1 crank angle degree.
It is based on the first law of thermodynamics, which allows to
calculate the pressure variation of the gas (air) due to in-cylinder
volume changes during both the compression and expansion
strokes. As already described above, equations (1)e(6) allow the
estimation of the in-cylinder pressure variation during a crank
rotation dw:

dp ¼ 1
V
½dQðk� 1Þ � kpdV � þ kp

dm
m

(31)

where V represents the in-cylinder volume, p the gas pressure, dQ
the heat received by the gas from the cylinder walls, k ¼ cP/cV is the
isentropic coefficient, m represents the in-cylinder mass while dm
is the mass entering the cylinder (hence for mass leakage dm is
negative).

In the thermodynamic model both cP and cV were considered
function of the gas temperature bymeans of the equations valid for
Air:
Gnozzle ¼

8>>>>>>>>>><
>>>>>>>>>>:
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cP ¼ 1403:06� 360:72
�
1000
T

�

þ 108:24
�
1000
T

�2
�10:79

�
1000
T

�3
½J=kgK� (32)

cV ¼ cP � R’ and R’ ¼ 287:1 ½J=kgK� k ¼ cP=cV
As regards wall heat transfers, three different models have been
considered, in order to assess the results of the method indepen-
dently from the heat exchange law:

a) Woschni model [7,8] h ¼ 3:26$d�0:2$ð2:28$umÞ0:8$T�0:53$p0:8

½W=m2K�

where, d ¼ cylinder bore [m], T ¼ gas temperature [K], p ¼ gas
pressure [kPa], um ¼ mean piston speed [m/s].

b) Hoenberg model [7] h ¼ 130$V�0:06ðum þ 1:4Þ0:8$T�0:4$p0:8

½W=m2K�

where, V ¼ instantaneous cylinder volume [m3], T ¼ gas temper-
ature [K], p ¼ gas pressure [bar], um ¼ mean piston speed [m/s].

c) Eichelberg model [7,9] h ¼ 2:43$um0:33$ðp$TÞ0:5 ½W=m2K�

where, T ¼ gas temperature [K], p ¼ gas pressure [bar], um ¼ mean
piston speed [m/s].

It is worth to mention that in the above listed heat transfer
models, any term related to the combustion pressure has been
omitted, since the task is to simulate the pressure changes in
a motored (i.e. without combustion) engine. Once fixed the model,
the heat received by the gas during the interval time dt (i.e. in the
rotation arc dw) can be evaluated as:

dQ ¼ h$DT$A$dt ¼ h$DT$A$dw
u

being u the engine speed [rad/sec], DT ¼ Twall�T the temperature
difference between cylinder walls and gas, and A the instantaneous
in-cylinder walls surface.

Gas leakage has been modelled as the mass flowing through an
equivalent convergent nozzle, hence the mass dm entered in the
time interval dt can be evaluated as:

dm ¼ �Gnozzle$dt ¼ �Gnozzle$dw

u
(33)

where the mass flow Gnozzle naturally depends on the in-cylinder
condition of pressure and temperature, and on the expansion ratio
pout/p:
Here AN represents the equivalent nozzle flow area, which has been
estimated bymeans of the results exposed in [5] keeping a constant
proportionality with the piston surface area (see Table 6 and
Table 12).

The crank rotation taken into consideration in the simulation
ranged from �180 to þ180 CAD after top dead centre (ATDC), with
neither inlet valve laganglenoradvancedopeningof theexhaust valve.

The pressure increment of equation (31) has been numerically
integrated using the Runge-Kutta fourth order method thus



Table 15

Compression ratios r 10 to 20
Rod to crank ratios m 2.8 to 4.0
Twall 70�C
TIVC 40�C
g 1.32
wLPP �1
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Fig. 15. Entropy variation ratio as function of compression ratio for three different heat
transfer models
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obtaining the in-cylinder pressure; the gas temperature has been
calculated by means of the perfect gas law:

T ¼ p
pIVC

V
VIVC

TIVC (35)

where pIVC, VIVC and TIVC denote the thermodynamic state of the gas
at the inlet valve closure.

Appendix B

In this section an analytical relation between the loss function
variation at the peak pressure position dFLPP and at the minimum
dV/V position dF1 is derived.

As first step, the in-cylinder evolutionwill be considered without
mass leakage; hence the ratio between the two loss function incre-
ments can be expressed in terms of entropy variations:

dFLPP
dFw1

h
dSLPP
dSw1

¼ ½dQ=T� LPP
½dQ=T �w1

(36)

where the amount of heat received by the gas from thewalls during
the time interval dt is:

dQ ¼ hAðTwall � TÞdt (37)

being h the heat transfer coefficient, A the area of the heat exchange
surface, T and Twall the gas and wall temperatures. Hence the
entropy variations ratio becomes:

dSLPP
dSw1

¼ ½hAðTwall � TÞ=T � LPP
½hAðTwall � TÞ=T �w1

(38)

The total in-cylinder wall surface area A is:

A ¼ p$d$
�
xþ d

2

�
¼ p$d2

2

�
x

d=2
þ 1
�

(39)

where x represents the piston distance from the cylinder top
(function of the crank angle w):

x ¼ d
2

"
2

r� 1
þ 1� cosðwÞ þ senðwÞ2

2m

#
(40)

Here r is the volumetric compression ratio, while m is the rod to
crank ratio (i.e. the ratio between the connecting rod length and the
crank radius). Introducing the dimensionless variable c ¼ 2x/d, the
ratio between the heat transfer surfaces become:

ALPP

Aw1

¼ ½cþ 1� LPP
½cþ 1�w1

(41)

According to the most used model for heat transfer between
gas and internal combustion engine cylinder, the heat transfer h
coefficient is related to gas pressure p, temperature T and volume
V by means of three power with exponents a, b and c
respectively:

h a paTbVc

Hence the ratio of the heat transfer coefficient becomes:

hLPP
hw1

¼

h
paTbVc

i
LPPh

paTbVc
i
w1

(42)

Both gas pressure and temperature are linked to in-cylinder
volume by the polytropic law:
pVg ¼ cost
TVg�1 ¼ cost

where g is the mean polytropic index.
It follows that the ratio between the heat transfer coefficient is:

hLPP
hw1

¼
�
Vw1

VLPP

�gðaþbÞ�b�c

¼
�
cw1

cLPP

�gðaþbÞ�b�c

(43)

The last fundamental ratio in equation (38) regards the
temperature difference between gas and wall:

½ðTwall � TÞ=T � LPP
½ðTwall � TÞ=T �w1

¼ ½Twall � T � LPP
½Twall � T� w1

�
cLPP
cw1

�g�1

(44)

If TIVC represents the gas temperature at inlet valve closure, then
the ratio between the temperature differences becomes:

½Twall � T � LPP
½Twall � T� w1

¼
Twall � TIVC

�
cIVC
cLPP


g�1

Twall � TIVC

�
cIVC
cw1

�g�1 (45)

Hence, from equations (38), (41), and (43)e(45), the entropy
variations ratio can be evaluated by means of:

dSLPP
dSw1

¼
�
cw1

cLPP

�b½cþ 1� LPP
½cþ 1�w1

h
Twall � TIVC

�
cIVC
cLPP


g�1i
�
Twall � TIVC

�
cIVC
cw1

�g�1� (46)

being the exponent b ¼ g (a þ b) e (b þ c) e (g e 1).
As can be noted, this ratio mainly depends on the engine

geometry and on the heat transfer law, then for a given engine, it
can be considered a constant:

dSLPP
dSw1

¼ F (47)

Assuming the values in Table 15 and taking into consideration three
different heat transfer models (Woschni [7,8], Eichelberg [7,9] and
Hohenberg [7]) it has been found that the values assumed by the
ratio of equation (46) ranges from 1.81 to 2.05 according to the
compression ratio and the engine heat transfer law, as shown in
Fig. 15. A negligible dependence has been found with respect to the



Table 16
Mean entropy variation ratio using three different heat transfer models.

Heat transfer model a b c F (mean value)

Woschni 0.8 �0.53 0 1.91
Eichelberg 0.5 0.50 0 1.83
Hohenberg 0.8 �0.40 �0.06 2.03
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rod to crank ratio m. The mean results obtained by each heat
transfermodel are resumed in Table 16, and, as can be noted, for the
constant F a mean value equal to 1.92 could be adopted.

Thus the following relation can be assumed to calculate the loss
function increment dFLPP at the peak pressure position, once the dF1
at the minimum dV/V position has been evaluated:

dFLPPz1:92dF1 (48)

This relation however has been derived for a constant mass
process; it will be now shown that a similar relation can be derived
in presence of mass leakage.

As shown in equation (10), for a real adiabatic evolution the loss
function increment is:

dF ¼ cP
dm
m

(49)

It follows that for an adiabatic process in presence of mass leakage
(neglecting the specific heat change) the ratio of the loss function
increment is:

dFLPP
dFw1

¼

h
cPdmm

i
LPPh

cPdmm
i
w1

z
dmLPP

dmw1

mw1

mLPP
(50)

The mass escaping from cylinder through valve seats and piston
rings during the crank rotation dw (i.e. during the time interval dt)
can be evaluated by means of the equation for the mass flow
through a convergent nozzle. Once the gas pressure is above the
critical pressure (which is about 2 times the outer pressure), the
leakage mass is:

dm ¼ �Gnozzledt ¼ �AN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k$m$

p
V

�
2

gþ 1

�gþ1
g�1

s
dt (51)

where AN is the constant equivalent flow area. It follows that the
ratio in equation (50) becomes:

dFLPP
dFw1

¼

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k$m$

p
V

�
2

gþ1


kþ1
k�1

r #
LPP" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k$m$
p
V

�
2

gþ1


kþ1
k�1

r #
w1

mw1

mLPP
(52)

Assuming that during the rotation arc from w1 to TDC the isen-
tropic coefficientk remains constant, the loss function ratiobecomes:

dFLPP
dFw1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih p
m$V

i
LPP

.h p
m$V

i
w1

r
(53)

The mass escaped in the considered crank rotation arc can
amount to few percentage points of the total mass, hence:

ffiffiffiffiffiffiffiffiffiffiffi
mw1

mLPP

r
z1 (54)

Thus by means of the polytropic law pVg ¼ constant and of the
already introduced dimensionless variable c ¼ 2x/d, the ratio in
equation (53) becomes:
dFLPP
dFw1

¼
�
cw1

cLPP

�gþ1
2

(55)

Using the same values of Table 15 it was found that this ratio moves
from1.94 to2.07,with ameanvalueof 2,which is not too far fromthe
result obtained in the case of heat transfers andnomass leakage (see
equation (48)), i.e. 1.92. Hence, considering a real diabatic process,
the constant F should assume a value between 1.9 and 2, i.e. 1.95
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Symbols and abbreviations

A: in-cylinder heat exchange surface area
Ac: cylinder section area ¼ (p d2)/4
AN: equivalent nozzle flow area for mass leakage calculation
c: engine stroke
cP: constant pressure specific heat of the gas
cV: constant volume specific heat of the gas
d: piston bore
dY: differential of the generic function Y
errorT: gas temperature uncertainty at inlet valve closure
errorr: engine compression ratio uncertainty
F: loss function
h: heat exchange coefficient
k: gas isentropic coefficient ¼ cP/cV
l: rod length
m: in-cylinder gas mass
p: in-cylinder gas pressure
p’: in-cylinder gas pressure affected by measurement errors
Q: heat received by the gas from the cylinder walls
q: specific heat received by the gas from the cylinder walls
r: crank radius
R’: in-cylinder gas constant
S: in-cylinder gas specific entropy
T: in-cylinder gas temperature
t: time
Twall: cylinder walls temperature
u: in-cylinder gas specific internal energy
um: mean piston speed
v: in-cylinder gas specific volume
V: in-cylinder volume
x: piston distance from the cylinder top
z: crank pin offset
c: adimensional piston position ¼ 2x/d
dF1 ¼ dFmin dV/V: loss function increment at the minimum dV/V angle
dF2 ¼ dFmax dV/V: loss function increment at the maximum dV/V angle
dFLPP: loss function increment at the peak pressure position
dFm: mean loss function increment ¼ 1/2 (dF1þdF2)
dt: time interval during the elementary crank rotation dw
dY: finite increment of the generic function Y during the elementary crank rotation

dw
F: proportionality constant
g: exponent of the polytropic evolution
m: engine rod to crank ratio
w: crank position
w1: crank position for the minimum dV/V

http://www.avl.com
http://www.kistler.com
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w2: crank position for the maximum dV/V
wB: BDC crank position measured with respect to cylinder axis (non centred crank

mechanism)
wloss: loss angle
wT: TDC crank position measured with respect to cylinder axis (non centred crank

mechanism)
r: engine compression ratio
s: adimensional crank pin offset ¼ z/l
ATDC: after top dead centre
BDC: bottom dead centre
BTDC: before top dead centre
CA: crank angle
CAD: crank angle degree(s)
IMEP: indicated mean effective pressure
IVC: inlet valve closure
LPP: location of pressure peak
LTDC: location of top dead centre
MAP: manifold absolute pressure
TDC: top dead centre
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